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Interim Project Report for Contract W911NF1410433

Report Period - Start Date: 08-01-2014; End Date: 07-31-2017

Statement of the problem studied

The overall goal of this work is to develop the perception, estimation, planning, and control techniques
necessary to enable autonomous agents to perform robustly and intelligently in complex uncertain domains.
This includes the ability to intelligently interact and coordinate with humans or other agents so as to achieve
goals effectively and efficiently.

The focus of our work has been to develop algorithms for effective and efficient planning in domains that
are characterized by a variety of action types, each with continuous parameters, for example the variety of
manipulation actions available to a robot (picking, placing, pushing, tilting, etc.). Furthermore, the actions
take place in the presence of uncertainty both as to the current state of the world and as to the actual result
of the action.

In this report, we highlight results that have appeared in major conferences. Some of this work is on its
way to appearing in journal publications as well.

Summary of the most important results

Backward-Forward Search for Manipulation Planning [4]

We are interested in solving manipulation planning problems in high-dimensional hybrid configuration spaces.
A state of such a system is characterized by a finite set of configuration variables that may be discrete (such
as which object a robot is holding or whether the light is turned on) or continuous (such as the joint-space
configuration of a robot or the pose of an object).

Without making any assumptions about the nature of the configuration space and the transition dynam-
ics, planning in such a space is quite difficult. We have developed a problem representation that can reveal
useful underlying structure in the domain that will be exploited by our method. There are three important
kinds of leverage:

• Factoring and sparsity: by representing the state space as the product of the spaces of a set of state
variables, we are able to assert that each action of the robot affects only a small subset of the state
variables, allowing individual actions to be contemplated in state spaces that are effectively much
smaller.

• Continuous modes: there are some continuous subspaces of the whole space that have continuous
dynamics, which allows us to use classic sample-based robot motion planning techniques to move
within those subspaces.

• Heuristic estimates: by constructing relaxed versions of a planning problem, we can efficiently obtain
estimates of the cost to reach a goal state and use these estimates to make the search for a solution
much more efficient.

We have developed a new planning algorithm, HBF, and applied it to a variety of different manipulation
problems (shown below) to characterize its performance. Solving these problems requires stacking, regrasp-
ing, pushing, and long-horizon manipulation. The planner and PR2 robot manipulation simulations were
written in Python using OpenRAVE. In each problem, red objects represent moveable objects that have no
particular goal condition. However, they impose geometric constraints on the problem and must, in many
cases, be manipulated in order to produce a satisfying plan.
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(a) Problem 1 (b) Problem 2 (c) Problem 3

(d) Problem 4 (e) Problem 5 (f) Problem 6

Figure 1: An early state on a valid plan for each problem.

Problem 1

The goal constraint is for the green block, which is surrounded by 8 red blocks, to be on the green region
on the table. Notice that the right table has 40 movable red objects on it that do not block the path of the
green object.

Problem 2

The goal constraint is for the green cylinder to be at the green point on the edge of the table. The cylinder
is too big for the robot to to grasp, so it must push it instead. The robot must move several of the red
objects and then push the green cylinder several times to solve the problem.

Problem 3

A thin but wide green block starts behind a similar blue block. The goal constraints are that the green
block be at the green point and that blue block be at the blue point, which is, in fact, its initial location.
The is problem is non-monotonic in that the robot must first violate one of the goal constraints, and then
re-achieve it. Additionally, the right cubby housing the green goal point is thinner than the left cubby, so
the green block can only be placed using a subset of its grasps, all of which are infeasible for picking it up
at its initial location. This forces the robot to place and regrasp the green block.

Problem 4

The goal constraints are that the green block be on the green region of the table, the blue block be on the
blue region of the table, and the black block be on top of the blue block. Because the black block must end
on the blue block, which itself must be moved, no static pre-sampling of object poses would suffice to solve
the problem. Additionally, a red block starts on top of the green block, preventing immediate movement of
the green block.

Problem 5

This is exactly the same problem considered by Srivastava et al. in earlier work. The goal constraint is to be
holding the red cylinder with an arbitrary grasp. 39 blue cylinders crowd the table, blocking the red object.

2



Problem 6

The goal constraints are that all 7 blue blocks must be on the left table and all 7 green blocks must be on the
right table. There are also 14 red blocks. The close proximity of the blocks forces the planner to carefully
order its operations as well as to move red blocks out of the way.

The experiments show that by leveraging the factored nature of common manipulation actions, HBF
is able to efficiently solve complex manipulation tasks. The runtimes are improvements over runtimes on
comparable problems reported in previous work. Additionally, the dynamic search allows HBF to solve
regrasping, pushing, and stacking problems all using the same planning algorithm.

Hierarchical planning for multi-contact non-prehensile manipulation [9]

We have explored a hierarchical approach to planning sequences of non-prehensile and prehensile actions. Our
planner operates hierarchically, first finding a sequence of qualitative “object contact states” that characterize
which parts of the moving object are in contact with which parts of other objects, then finding a feasible
sequence of poses for the object (figure 2), and finally finding a sequence of contact points for the manipulators
on the object (figure 3). This hierarchical structure provides significant search guidance, and divides the
problem into three search problems that are much smaller than a search in the full combined configuration
space of the object and manipulators.

Figure 2: A contact state graph with poses connected through linear interpolation. Poses connecting two

contact states are very close to each other.

To find a robot-contact plan, we discretize the object’s surface into a set of possible contact points and
define a state to contain an object pose and a set of contacts of the robot’s manipulators on the object. We
then identify states that are feasible: both accessible, meaning that the robot can reach all of the specified
contacts and stabilizable, meaning that there exists a set of contact forces between the object and the robot’s
manipulators, as well as the fixed objects, that can stabilize the object against gravity (figure 3).

Figure 4 illustrates the connected search spaces: within the discrete contact states in the contact-state
graph, there are individual object poses, and a path through object-contact space can be realized by a path
through object pose space. Then, for each object pose, there is a set of robot contacts, and a path through
object pose space can be realized by a path of transit and transfer motions through the combined space of
robot contacts and object poses.

We have implemented a version of this planner (in simulation) for planar objects and two robot contacts,
without any further kinematic or collision constraints introduced to model the robot performing the manip-
ulation. We tested these approaches on two problems. The first, shown in figure 5, focuses on sequencing
non-prehensile manipulation steps. There is an obstacle in the middle of the table, and the goal in this
problem is to move the box to the other side of the table. Allowing only nonprehensile manipulation, the
planner is able to find a solution.

3



Figure 3: Robot contact space for p = (0, 0, π/6). Each axis represents possible contact points along the

object’s surface accessible by hand1 and hand2. The leftmost column and the bottom row represent no-

contact for hand1 and hand2, respectively. Green cells represent feasible states with only one contact, i.e.

where the object can be balanced by only one hand. If either hand makes the object stabilizable on its own,

the other hand can place itself on any accessible surface; these states are colored in red. For example, if a

row’s leftmost cell is green, all accessible cells in the row becomes red. States that require both hands are

colored in blue. Grey cells represent invalid or inaccessible states. Since vertex A is already in contact with

ground, any state containing A is inaccessible. White cells are infeasible. A transit is a transition from a red

state to another red state in the same row or column. The example shows transits from (c1, c2) to (c1, none)

to (c1, c3), changing which manipulator is stabilizing the object.

Figure 4: The relationship between the spaces of object contacts, object poses, and robot contacts.

Symbol Acquisition for Probabilistic High-Level Planning [8]

Systems that combine high-level planning with low-level control are capable of generating complex, goal-
driven behavior. But, they are hard to design because they require a difficult integration of symbolic
reasoning and low-level motor control.

Recently, we showed how to automatically construct a symbolic representation suitable for planning
in a high-dimensional, continuous domain. This work modeled the low-level domain as a semi-Markov
decision process and formalized a propositional symbol as the name given to a grounding set of low-level
states (represented compactly using a learned classifier). Their key result was that the symbols required to
determine the feasibility of a plan are directly determined by characteristics of the actions available to an
agent. This close relationship removes the need to hand-design symbolic representations of the world and
enables an agent to, in principle, acquire them autonomously.

However, a set-based symbol formulation cannot deal with learned sets that may not be exactly correct,
and can only determine whether or not the probability of successfully executing a plan is 1. These restrictions
are ill-suited to the real-world, where learning necessarily results in uncertainty and all plans have some
probability of failure
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Figure 5: Key frames from a sample solution trajectory for tumbling one box over another. Red lines indicate

the force direction of the robot contact pushing the object. The “hands” simply highlight the location of

the chosen robot contacts.

In our new work, we introduced a probabilistic reformulation of symbolic representations capable of
naturally dealing with uncertain representations and probabilistic plans. This is achieved by moving from
sets and logical operations to probability distributions and probabilistic operations. We use this framework
to design an agent that autonomously learns a completely symbolic representation of a computer game
domain, enabling very fast planning using an off-the-shelf probabilistic planner.

Implicit Belief-Space Pre-images for Hierarchical Planning and Execution[6]

We have developed a method for planning and execution in very high-dimensional mixed discrete and con-
tinuous spaces in the presence of uncertainty, based on an implicit, factored approximation of pre-images
in continuous spaces and have extended it to apply to the case where the space is actually the belief space
of probability distributions over underlying world states. We have implemented a planning algorithm that
searches in the space of pre-images in this representation. Finally, we have demonstrated this approach in
a mobile-manipulation domain that combines pushing with pick-and-place manipulation using actions with
motion and sensing error (see Figure 6).

Figure 6: A test case in which the object must be moved out of the way and the red object pushed to the

left corner of the table. Initial situation is on the left; a final situation from a sample run is on the right.

This approach is related to our earlier work on the Hierarchical Planning in the Now (HPN) system. The
two key differences are: (1) the representation of pre-images by using implicit fluents such as CanReachHome
and CanPlace instead of using explicit representations of swept volumes of particular paths as obstacles, and
(2) the introduction of a general notion of conditioning in the regression algorithm to handle these implicit
fluents. Together these extensions generalize and make systematic the pre-image computation approach
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in our earlier work. Our contribution is to show how to tractably plan using implicit representations of
pre- images in hybrid state-spaces and to demonstrate their use for hierarchical planning and execution
monitoring in real robot manipulation problems.

We have shown empirically that execution monitoring using pre-images provides a substantial improve-
ment in computational efficiency over continual replanning, and that the hierarchical algorithm enabled by
abstract pre-image backchaining provides even further efficiency improvements.

Searching for Physical Objects in Partially Known Environments[10]

As the perception, locomotion, and manipulation abilities of robots begin to improve, we begin to contemplate
constructing robots that can help with household chores or assist in disaster recovery. In open domains such
as these, robots will have to be able to operate in cluttered domains and be able to locate objects of interest
within them.

Searching for Physical Objects in Partially Known Environments

Xinkun Nie, Lawson L.S. Wong, Leslie Pack Kaelbling

Abstract— We address the problem of a mobile manipulation
robot searching for an object in a cluttered domain that is
populated with an unknown number of objects in an unknown
arrangement. The robot must move around its environment,
looking in containers, moving occluding objects to improve its
view, and reasoning about collocation of objects of different
types, all in service of finding a desired object. The key contri-
bution in reasoning is a Markov-chain Monte Carlo (MCMC)
method for drawing samples of the arrangements of objects in
an occluded container, conditioned on previous observations of
other objects as well as spatial constraints. The key contribution
in planning is a receding-horizon forward search in the space of
distributions over arrangements (including number and type)
of objects in the domain; to maintain tractability the search is
formulated in a model that abstracts both the observations and
actions available to the robot. The strategy is shown empirically
to improve upon a baseline systematic search strategy, and
sometimes outperforms a method from previous work.

I. INTRODUCTION

As the perception, locomotion, and manipulation abilities
of robots begin to improve, we begin to contemplate con-
structing robots that can help with household chores or assist
in disaster recovery. In open domains such as these, robots
will have to be able to operate in cluttered domains and be
able to locate objects of interest within them.

In this paper, we address the problem of a mobile manip-
ulation robot searching for an object in a cluttered domain
that is populated with an unknown number of objects in
an unknown arrangement. The robot must move around
its environment, looking in containers, moving occluding
objects to improve its view, and reasoning about collocation
of objects of different types, all in service of finding a desired
object. We do not address issues of low-level perception or
of manipulation; rather, we provide a general framework for
reasoning about arrangements of unknown objects and for
planning how to search effectively for a desired object.

The key contribution in reasoning is a Markov-chain
Monte Carlo (MCMC) method for drawing samples of the ar-
rangements of objects in an occluded container, conditioned
on previously gathered information of a variety of types.
Relevant information includes: spatial knowledge, such as
the sizes and shapes of containers such as shelves, historical
knowledge, of which objects have already been removed
from the containers, type co-occurrence knowledge, which

We gratefully acknowledge support from NSF grants 1420927 and
1523767, from ONR grant N00014-14-1-0486, and from ARO grant
W911NF1410433. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139
{xnie,lsw,lpk}@csail.mit.edu

Fig. 1. A robot searching for objects in a 2-D domain. The colored
rectangles are the objects that can be observed by the robot if the robot
sits within the corresponding view window. The half-blue half-red object
can be observed both from the red view window and the blue view window.
The grey shaded objects are occluded, and are only visible after objects in
the front have been removed. In our problem, the robot is asked to obtain
an object of a specific type, and it must choose both where to look and
possibly what to remove in order to find the object. When the target object
type is occluded, contextual cues such as collocated object types and spatial
constraints can be used in an inference process to guide the search.

says which types of objects are most likely to occur near
one another, and other global constraints in the domain.

The key contribution in planning is a receding-horizon
forward search in the space of beliefs about (distributions
over) arrangements (including number and type) of objects
in the domain. In our domain, observations are drawn from
a continuous space of object poses, so making this search
tractable requires the construction of abstract observation
models, which reduce the effective branching factor and
number of state samples needed to represent beliefs.

II. RELATED WORK

The object-search problem has recently attracted a sig-
nificant amount of interest in the indoor service robotics
community. The earliest approach framed the problem as
active visual search [19], [17], which seeks the next best view
at which to place a visual sensor in order to find the desired
object. Much subsequent work in robotics has expanded
on this formulation; Aydemir et al. [1] provides a good
overview of the numerous works. Most of the later work
attempt to capture additional structural information found
in typical household environments, including object-location
and object-object co-occurrences [8], [1], spatial relations
[9], [11], object affordances [12] and scene ontologies [14].
While from these studies it is clear that additional knowledge
is beneficial, most are focused on relatively uncluttered
domains. In this case, since it is essentially guaranteed that

Figure 7: A robot searching for objects in a 2-D domain. The colored rectangles are the objects that can

be observed by the robot if the robot sits within the corresponding view window. The half-blue half-red

object can be observed both from the red view window and the blue view window. The grey shaded objects

are occluded, and are only visible after objects in the front have been removed. In our problem, the robot

is asked to obtain an object of a specific type, and it must choose both where to look and possibly what

to remove in order to find the object. When the target object type is occluded, contextual cues such as

collocated object types and spatial constraints caEn be used in an inference process to guide the search.

In this paper, we have addressed the problem of a mobile manipulation robot searching for an object in
a cluttered domain that is populated with an unknown number of objects in an unknown arrangement (see
Figure 7). The robot must move around its environment, looking in containers, moving occluding objects
to improve its view, and reasoning about collocation of objects of different types, all in service of finding a
desired object. We did not address issues of low-level perception or of manipulation in this paper; rather,
we provide a general framework for reasoning about arrangements of unknown objects and for planning how
to search effectively for a desired object.

The key contribution in reasoning is a Markov-chain Monte Carlo (MCMC) method for drawing samples
of the arrangements of objects in an occluded container, conditioned on previously gathered information of a
variety of types. Relevant information includes: spatial knowledge, such as the sizes and shapes of containers
such as shelves, historical knowledge, of which objects have already been removed from the containers, type
co-occurrence knowledge, which says which types of objects are most likely to occur near one another, and
other global constraints in the domain.

The key contribution in planning is a receding-horizon forward search in the space of beliefs about
(distributions over) arrangements (including number and type) of objects in the domain. In our domain,
observations are drawn from a continuous space of object poses, so making this search tractable requires
the construction of abstract observation models, which reduce the effective branching factor and number of
state samples needed to represent beliefs.
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Object-based World Modeling in Semi-Static Envrionments with Dependent

Dirichlet Process Mixtures[12]

Robots need to know about objects in order to perform most tasks in human-centered environments. Objects
should be un- derstood in terms of semantic attributes such as type, pose, function, and possibly relations
with other objects. Semantic perception tools are increasingly becoming available, and it is tempting to use
them as black-box perception modules. However, such perception is still error-prone, due to noise, occlusion,
clutter, and limited fields of view. To achieve greater reliability, our strategy is to aggregate the output from
noisy perception pipelines, across time and space (different viewpoints), and estimate the true state, i.e., the
world model (see Figure 8).

Epoch 1 
(4 objects initially) 

Epoch 2 
(1 square removed) 

Epoch 3 
(1 circle added) 

False 
negative pFN(a) = ηa False 

positive pFP = ρ Attribute 
error b ~ ϕa 

World 

Views 

Obser- 
vations 

All pose observations 
also have errors y ~ N (x, S) 

Θ3 = {(ak3, xk3)} = { (tri, (.4, .3)),   (sqr, (.6, .6)),   (cir, (.9, .3)),   (cir, (1.2, .3)) } 
O3 = {(b3i, y3i)} = { (cir, (.2, .6)),   (cir, (1.1, .3)) } t=1: view 1 

1: cir; (.3, .1) 
2: sqr; (.4, .6) 

t=1: view 2 
3: sqr; (.6, .6) 
4: sqr; (.7, .5) 

t=1: view 3 
5: cir; (1.2, .5) 
 

t=2: view 1 
1: tri; (.3, .2) 
 

t=2: view 2 
2: sqr; (.7, .5) 
 

t=3: view 1 
1: cir; (.2, .6) 
 

t=3: view 2 
2: cir; (1.1, .3) 
cir; (.9, .3) 

Figure 1: An illustration of the world modeling problem. An unknown number of objects exist in the world (top row), and change in pose
and number over time (world at each epoch enclosed in box). At each epoch, limited views of the world are captured, as depicted by the
triangular viewcones. Within these viewcones, objects and their attributes are detected using black-box perception modules (e.g., off-the-shelf
object detectors). In this example, the attributes are shape type (discrete) and 2-D location. The observations are noisy, as depicted by the
perturbed versions of viewcones in the middle row. Uncertainty exists both in the attribute values and the existence of objects, as detections
may include false positives and negatives (e.g., t = 3). The actual attribute detection values obtained from the views are shown in the bottom
row (“Observations”); this is the format of input data. Given these noisy measurements as input, the goal is to determine which objects were
in existence at each epoch, their attribute values (e.g., ⇥3 in top right), and their progression over time.

2 Problem Definition
In world modeling, we seek the state of the world, consist-
ing an unknown finite number Kt of objects, which changes
over time. Object k at epoch t has attribute values ✓kt. We
sometimes decompose ✓kt into

�
ak, xkt

�
, where a is a vec-

tor of fixed attributes, and x is a vector of attributes that may
change between epochs. The top row in Figure 1 illustrates
the world state over three epochs for a simple domain.

Our system obtains noisy, partial views of the world. Each
view v produces a set of observations Otv = {otv

i }, where
otv

i = (btv
i , ytv

i ), corresponding to the fixed attributes a and
dynamic attributes xt of some (possibly non-existent) object.1
Each view is also associated with a field of view V tv . The
collection of views in a single epoch may fail to cover the
entire world. The partial views and noisy observations are
illustrated in the middle and bottom rows of Figure 1.

The world modeling problem can now be defined: Given
observations O = {otv

i }(t,v,i) and fields of view {V tv}(t,v),
determine the state of objects over time ⇥ =

�
✓kt

 
(k,t)

. The
state includes not only objects’ attribute values, but also the
total number of objects that existed at each epoch, and im-
plicitly when objects were added and removed (if at all).

There is no definitive information in the observations that
will allow us to know which particular observations corre-
spond with which underlying objects in the world, or even

1Superscripts in variables will generally refer to the ‘context’,
such as object index k and time index t. Subscripts refer to the
index in a list, such as ot

i = i’th observation at time t.

how many objects were in existence at any time step. For ex-
ample, in the views of t = 1 shown in Figure 1, the square
detected in the left-most view may correspond to either (or
neither) square in the center view. Also, despite there being
only four objects in the world, there were five observations
because of overlapping visible regions.

The critical piece of information that is missing is the as-
sociation ztv

i of an observation otv
i to an underlying object k.

With this information, we can perform statistical aggregation
of the observations assigned to the same object to recover its
state. We will model the associations Z = {ztv

i }(t,v,i) as
latent variables in a Bayesian inference process.

2.1 Observation noise model
The observation model describes how likely an observation
o = (b, y) was generated from some given object state
✓ = (a, x) (if any), given by the probability f (o ; ✓). For
a single object, let ✓c and ✓d be the true continuous and dis-
crete attribute values respectively, and likewise oc and od for
a single observation of the object. We typically consider ob-
servation noise models of the following form:

f (o ; ✓) = �✓d(od) N (oc ; ✓c, S) (1)

Here � represents a discrete confusion matrix, where �✓d(od)
is the probability of observing od given the true object has
discrete attributes ✓d. The continuous-valued observation oc

is the true value ✓c corrupted with zero-mean Gaussian noise,
with fixed sensing covariance S. The noise on oc and od are
assumed to be independent for simplicity.

Figure 8: An illustration of the world modeling problem. An unknown number of objects exist in the

world (top row), and change in pose and number over time (world at each epoch enclosed in box). At

each epoch, limited views of the world are captured, as depicted by the triangular viewcones. Within

these viewcones, objects and their attributes are detected using black-box perception modules (e.g., off-the-

shelf object detectors). In this example, the attributes are shape type (discrete) and 2-D location. The

observations are noisy, as depicted by the perturbed versions of viewcones in the middle row. Uncertainty

exists both in the attribute values and the existence of objects, as detections may include false positives

and negatives (e.g., t = 3). The actual attribute detection values obtained from the views are shown in the

bottom row (Observations); this is the format of input data. Given these noisy measurements as input, the

goal is to determine which objects were in existence at each epoch, their attribute values (e.g., Θ3 in top

right), and their progression over time.

Estimating properties of individuals from noisy observations is a relatively simple statistical estimation
problem if the observations are labeled according to which individual generated them. Even when the
underlying attributes of the individual change over time, estimating their history reduces to inference in a
hidden Markov model.

The key difficulty is data association. We do not know which particular individual is responsible for
each observation; determining an appropriate association of observations to individuals is key. The only
information we have to make such associations are noisy and partial observations, which may contain errors
both in attribute values and in number.

This problem was first addressed in the context of multiple-target tracking. A classical solution is multiple
hypothesis tracking, which has been applied in previous world modeling applications. Others have pointed
out drawbacks in using the MHT, which include inefficiency due to considering an exponential number of
hypotheses, and the inability to revisit associations from previously-considered views (the MHT is a filtering
algorithm). Inspired by this, others have proposed different Markov-chain Monte Carlo (MCMC) methods
for data association, and have demonstrated superior tracking performance.

In multiple-target tracking problems, each targets state (typically location) changes between observations.
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However, if we consider applications such as tracking objects in a household, the dynamics are different: most
objects tend to stay in the same state when they are not being actively used. In this paper, we studied the
world modeling problem in semi-static environments, where time is divided into known epochs, and within
each epoch the world is stationary. Intuitively, data association should be easier within static periods, since
there is no uncertainty arising from stochastic dynamics.

At the other end of the spectrum, in previous work we considered the world modeling problem under
a static world assumption. We proposed a clustering-based view of the problem, where objects are treated
as cluster components (in a joint attribute space), and observations are noisy measurements generated
from these clusters. We used Bayesian nonparametric models to handle an unknown number of objects,
in particular the Dirichlet process mixture model (DPMM). This approach is fundamentally limited by the
DPMMs inability to capture temporal dynamics.

Dependent Dirichlet processes (DDP), in contrast, are capable of modeling dynamic clusters. We use
a DDP mixture model to infer object attributes and their changes over time, including the addition and
removal of objects in the world. A novel approximate MAP inference method is also proposed.

Learning to Rank for Synthesizing Planning Heuristics[3]

Forward state-space greedy heuristic search is a powerful technique that can solve large planning problems.
However, its success is strongly dependent on the quality of its heuristic. Many domain-independent heuristics
estimate the distance to the goal by quickly solving easier, approximated planning problems. While domain-
independent heuristics have enabled planners to solve a much larger class of problems, there is a large amount
of room to improve their estimates. In particular, the effectiveness of many domain-independent heuristics
varies across domains, with poor performance occurring when the approximations in the heuristic discard a
large amount of information about the problem.

Previous work has attempted to overcome the limitations of these approximations by learning a domain-
specific heuristic correction. Yoon et al. formulated learning a correction for the FastForward (FF) heuristic
as a regression problem and solved it using ordinary least-squares regression. While the resulting planner
is no longer domain-independent, the learning process is domain independent, and the learned heuristic is
more effective than the standard FF heuristic.

In this paper, we improved on these results by framing the learning problem as a learning to rank problem
instead of an ordinary regression problem. This is motivated by the insight that, in a greedy search, the
ranking induced by a heuristic, rather than its numerical values, governs the success of the planning. By
optimizing for the ranking directly, our RankSVM learner is able to produce a heuristic that outperforms
heuristics learned through least-squares regression.

Additionally, we introduce new methods for constructing features for heuristic learners. Like Yoon et
al., we derive our features from an existing domain-independent heuristic. However, our features focus on
the ordering and interaction between ac- tions in approximate plans. Thus, they can be based on any
existing heuristic that implicitly constructs an approximate plan, such as the context-enhanced additive
(CEA) heuristic. These features can be easily constructed and still encode a substantial amount of informa-
tion for heuristic learners.

In our experiments, we evaluated the performance of the different configurations of our learners on several
of the International Planning Competition learning track problems. We find that the learned heuristics using
the RankSVM approach allow more problems to be solved suc- cessfully than using the popular FF and
CEA heuristics alone. Additionally, they significantly surpass the performance of heuristics learned through
ordinary regression.

Bounded Optimal Exploration in MDP[7]

Within the framework of probably approximately correct Markov decision processes (PAC-MDP), much
theoretical work has focused on methods to attain near optimality after a relatively long period of learning
and exploration. However, practical concerns require the attainment of satisfactory behavior within a short
period of time.

In this paper, we relaxed the PAC-MDP conditions to reconcile theoretically driven exploration methods
and practical needs. We propose simple algorithms for discrete and continuous state spaces, and illustrate
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the benefits of our proposed relaxation via theoretical analyses and numerical examples. Our algorithms also
maintain anytime error bounds and average loss bounds. Our approach accommodates both Bayesian and
non- Bayesian methods.

Optimization as Estimation with Gaussian Processes in Bandit Settings[11]

Recently, there has been rising interest in Bayesian optimization the optimization of an unknown function
with assumptions usually expressed by a Gaussian Process (GP) prior. We have studied an optimization
strategy that directly uses an estimate of the argmax of the function. This strategy offers both practical
and theoretical advantages: no tradeoff parameter needs to be selected, and, moreover, we establish close
connections to the popular GP-UCB and GP-PI strategies.

Our approach can be understood as automatically and adaptively trading off exploration and exploitation
in GP-UCB and GP-PI. We illustrate the effects of this adaptive tuning via bounds on the regret as well as
an extensive empirical evaluation on robotics and vision tasks, demonstrating the robustness of this strategy
for a range of performance criteria.

Sample-Based Methods for Factored Task and Motion Planning[5]

Figure 9: (Left) Each object has a specified goal pose. The initial placements are randomly generated.

(Right) The goal is that a single blue object be moved to a different table. The blue object starts at the

center of the visible table, and the red objects are randomly placed on the table.

Many important robotic domains of interest require planning in a very high-dimensional space that
includes not just the robot configuration, but also the configuration of the external world state, including a
variety of quantities such as object poses, reaction states of chemical or biological processes, or intentions
of other agents. There has been a great deal of progress in developing probabilistically complete sampling-
based methods that move beyond motion planning to multi-modal problems including various forms of
task planning. These new methods each require a new formulation, definition of robust feasibility, sampling
methods, and search algorithm. This paper presents a general-purpose formulation of a large class of discrete-
time planning problems, with continuous or hybrid state and action spaces.

9



The primary theoretical contribution of this paper is a formulation of factored transition systems that ex-
poses the topology of their solution space, particularly in the presence of dimensionality-reducing constraints.
The key insight is that, in some cases, the intersection of solution constraint manifolds is itself a manifold
that can be identified using only the individual constraint manifolds. By understanding the topology of the
solution space, we can define a robust feasibility property that characterizes a large class of problems for
which sampling-based planning methods can be successful.

The primary algorithmic contribution is the construction of two sample-based planning algorithms that
exploit the factored, compositional structure of the solution space to draw samples from a space in which
solutions have positive measure. These algorithms search in a combined space that includes the discrete
structure (which high-level operations, such as pick or place happen in which order) and parameters (partic-
ular continuous parameters of the actions) of a solution. Theoretically, these algorithms are probabilistically
complete when given sufficient samplers. Practically, they can solve complex instances of task-and-motion
planning problems (such as shown in Figure 9).

Provably Safe Robot Navigation with Obstacle Uncertainty[1]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5
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2.0
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Fig. 2: An example of the region defined by theorem 1. The
darker region is the ”mean” obstacle and the orange region
contains 95% of the obstacles generated by these parameters.

with a fixed number of faces. For x represented in homoge-
neous coordinates, a polytope X can be represented as

X =
\

nT
i x  0 .

When these normal vectors ni are drawn from a Gaussian
distribution N (µi,⌃i), we will call this a polytope with Gaus-
sian distributed Faces (PGDF) with parameters µi,⌃i. We do
not assume that the normal vectors are drawn independently
and show that an independence assumption would yield little
additional tightness to our bounds.

Using the PGDF model, we will be able to identify shadow
regions that are guaranteed to contain the obstacle with a
probability greater than 1� ✏ in most cases of interest. There
are degenerate combinations of values of ✏, µ, and ⌃ for
which there is no well-defined shadow (consider the case
in which the means of all the face-planes go through the
origin, for example). In addition, there are some cases in
which the bounds we use for constructing regions are not tight
and so although a shadow region exists, we cannot construct
it. Details of these cases are discussed in the proofs in the
supplementary material.

If we consider a single face, theorem 1 identifies a shadow
region likely to contain the corresponding half-space.

Theorem 1. Consider ✏ 2 (0, 1), n ⇠ N (µ,⌃) such that
the combination of ✏, µ,⌃ is non-degenerate. There exists a
shadow S s.t. {x | nT x � 0} is contained within S with
probability at least 1 � ✏.

While a detailed constructive proof is deferred to the supple-
mental materials, we present a sketch here. First, we identify
a sufficiently high probability-mass region of half-spaces n,
which, by construction corresponds to a linear cone C in the
space of half-space parameters. We then take the set of x’s in
homogeneous coordinates that these half-spaces contain. The
set of points not contained by any half-space is the polar cone
of C. Converting back to non-homogeneous coordinates yields
conic sections as seen in figure 2.

In lemma 1 we generalize this notion to polytopes. For an
obstacle with m faces, we can take the intersection of the
resulting ✏

m -shadows. A union bound guarantees that the prob-
ability of any face not being contained in its corresponding
region is less than ✏. Thus the probability that the polytope

P (A) = 0.5 P (AC) = 0.5

Fig. 3: Both the blue and black squares are valid 0.5-shadows,
while the union of the two yellow areas is the set of points
with probability at least 0.5 of being in the square.

Fig. 4: The blue square represents the “mean” estimated
obstacle. Each outline in the red set represents a different
probability shadow of the obstacle.

is not contained in this region is less than ✏. In other words,
lemma 1 constructs an ✏ shadow.

Lemma 1. Consider a polytope defined by
T
i

nT x  0. Let

Xi be a set that contains the halfspace defined by ni with
probability at least 1� ✏i (for example as in theorem 1). ThenT
i

Xi contains the polytope with probability at least 1�P
i

✏i.

A. Computing Obstacle Shadows

We will use theorem 1 and lemma 1 to construct regions
which we can prove are shadows. Before we continue, how-
ever, we note that obstacle shadows need not be unique, or
correspond to the set of points with probability greater than
✏ of being inside the obstacle. Consider the case where a
fair coin flip determines the location of a square as shown
in figure 3. While there have been previous attempts to
derive unsafe regions for normally-distributed faces [15], this
lemma is stronger in that it constructs a set that is likely
contain the obstacle as opposed to identifying points which
are individually likely to be inside the obstacle.

Recall that a PGDF obstacle is a random polytope with m
sides, that is, the intersection of m halfspaces. We can provide
a shadow for each halfspace using theorem 1, and use lemma

Iteration 1 Iteration 2

Iteration 3 Iteration 4

Fig. 6: A line search for the maximal shadow. The shadow
“grows” and “shrinks” until it contacts the green space visited
by the robot.

as shown in figure 6. While we restrict our attention to the
general case, in certain cases, such as where X is a collection
of points, this optimization can be solved analytically.

Essentially we are growing the size of the shadow until it
almost touches the states that the robot can visit, X .

We define FIND MAXIMAL SHADOW(✏p, µi,⌃i, V ),
which takes the precision ✏p, PGDF parameters µi,⌃i, and
swept volume V , and uses a standard bisection search to
find and return the largest ✏ for which the shadows are
non-intersecting with V . This requires O(log 1/✏p) calls of
intersection—proportional to the number of digits of precision
required. The runtime grows very slowly as the acceptable
probability of collision goes to zero.

B. Multiple Obstacles

In order to extend the algorithm to multiple obstacles we
imitate the union bound in theorem 2. We run the line search
to determine the largest allowable ✏ for every obstacle, and
sum the resulting ✏’s to get the ultimate bound on the risk.
The psuedocode is presented in algorithm 1.

This algorithm is embarrassingly parallel because every ✏i
can be computed independently without increasing the total
amount of required computation. To obtain a total accumulated
numerical error less than � we only need to set ✏p = �/n.
If ! is the complexity of a single call of intersection, our
algorithm runs in O(!n log n log 1/�) time. However, since
the search for shadows can be done in parallel in a work-
efficient manner, the algorithm can run in O(! log n log 1/�)
time on ⇥(n) processors.

Algorithm 1 FIND MAXIMAL SHADOW SET

Input: ✏p, µi,⌃i, V
Output: ✏, s.t. the path generating volume V is at least ✏ safe

and each shadow is less than ✏p away from the minimal
✏ for which this class of bound may be obtained.

1: for i = 1...n do
2: ✏i = FIND MAXIMAL SHADOW(✏p, µi,⌃i, V )
3: end for
4: return

P
✏i

If the intersection check is implemented with a collision
checker then finding a safety certificate is only log factors
slower than running a collision check–suggesting that systems
robust to uncertainty do not necessarily have to have signifi-
cantly more computational power.

Furthermore, since the algorithm computes a separate ✏ for
every obstacle, obstacles with little relevance to the robot’s
actions do not significantly affect the resulting risk bound.
This allows for a much tighter bound than algorithms which
allocate the same risk for every obstacle.

C. Experiments

We can illustrate the advantages of a geometric approach by
certifying a trajectory with a probability of failure very close
to zero. For an allowable chance of failure of ✏, the runtime
of sample-based, Monte-Carlo methods tends to depend on
1
✏ as opposed to log 1/✏. Monte-Carlo based techniques rely
on counting failed samples requiring them to run enough
simulations to observe many failed samples. This means that
they have trouble scaling to situations where ✏ approaches
zero and failed samples are very rare. For example, Janson
et al.’s method takes seconds to evaluate a simple trajectory
with ✏ = 0.01, even with variance reduction techniques [5].

We demonstrate our algorithm on a simple domain with
✏ = 2.2 ⇥ 10�5. Our algorithm required just 6 calls to a
collision checker for each obstacle. We also demonstrate that
our algorithm can certify trajectories which cannot be certified
as safe with shadows of equal sizes. Figures 7 and 8 show the
problem domain. Figure 7 shows that the trajectory cannot be
certified as safe with a uniform risk assigned to each obstacle.
Figure 8 shows the shadows found by our algorithm that prove
the trajectory is safe.

IV. ONLINE SAFETY

The bounds in the previous section do not immediately gen-
eralize to a setting where the robot acquires more information
over time and can be allowed to change its desired trajectory.
Additional care must be taken to ensure that the system cannot
“trick” the notion of safety used, and not honor the desired
contract on aggregate lifetime risk of the execution instance.
Consider the case where, if a fair coin turns up as heads the
robot takes a path with a 1.5✏ probability of failure and it
takes a trajectory with a 0.5✏ probability of failure otherwise.
This policy takes an action that is unsafe, but the probability of
failure of the policy is still less than ✏. Furthermore, the history

Figure 10: (Left) The blue square represents the mean estimated obstacle. Each outline in the red set

represents a different probability shadow of the obstacle. (Right) A line search for the maximal shadow. The

shadow grows and shrinks until it contacts the green space visited by the robot.

Safe and reliable operation of a robot in a cluttered environment can be difficult to achieve due to noisy
and partial observations of the state of both the world and the robot. As autonomous systems leave the
factory floor and become more pervasive in the form of drones and self-driving cars, it is becoming increasingly
important to understand how to design systems that will not fail under these real-world conditions. While
it is important that these systems be safe, it is also important they do not operate so conservatively as to
be ineffective. They must have a strong understanding of when they take risks so they can avoid them, but
still operate efficiently.

While most previous work focuses on robot state uncertainty, this paper focuses on safe navigation when
the locations and geometries of these obstacles are uncertain. We focus on algorithms that find safety
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certificates easily verifiable proofs that the trajectory or policy is safe. We examine two implications of the
algorithms. First, the computational complexity of reasoning about uncertainty can be quite low. Second,
the mathematics surrounding robot safety can have surprising behavior. We demonstrate how these tools
can be used to design a motion planner guaranteed to give only safe plans, and inform the design of more
general systems that make decisions under uncertainty.

Provably Safe Robot Navigation with Obstacle
Uncertainty

Brian Axelrod, Leslie Pack Kaelbling and Tomás Lozano-Pérez

Abstract—As drones and autonomous cars become more
widespread it is becoming increasingly important that robots can
operate safely under realistic conditions. The noisy information
fed into real systems means that robots must use estimates of
the environment to plan navigation. Efficiently guaranteeing that
the resulting motion plans are safe under these circumstances
has proved difficult. We examine how to guarantee that a
trajectory or policy is safe with only imperfect observations
of the environment. We examine the implications of various
mathematical formalisms of safety and arrive at a mathematical
notion of safety of a long-term execution, even when conditioned
on observational information. We present efficient algorithms
that can prove that trajectories or policies are safe with much
tighter bounds than in previous work. Notably, the complexity of
the environment does not affect our method’s ability to evaluate
if a trajectory or policy is safe. We then use these safety checking
methods to design a safe variant of the RRT planning algorithm.

I. INTRODUCTION

A. Motivation

Safe and reliable operation of a robot in a cluttered envi-
ronment can be difficult to achieve due to noisy and partial
observations of the state of both the world and the robot. As
autonomous systems leave the factory floor and become more
pervasive in the form of drones and self-driving cars, it is
becoming increasingly important to understand how to design
systems that will not fail under these real-world conditions.
While it is important that these systems be safe, it is also
important they do not operate so conservatively as to be
ineffective. They must have a strong understanding of when
they take risks so they can avoid them, but still operate
efficiently.

While most previous work focuses on robot state uncer-
tainty, this paper focuses on safe navigation when the locations
and geometries of these obstacles are uncertain. We focus
on algorithms that find safety “certificates”—easily verifiable
proofs that the trajectory or policy is safe. We examine
two implications of the algorithms. First, the computational
complexity of reasoning about uncertainty can be quite low.
Second, the mathematics surrounding robot safety can have
surprising behavior. We demonstrate how these tools can be
used to design a motion planner guaranteed to give only safe
plans, and inform the design of more general systems that
make decisions under uncertainty.

B. Problem Formulation

We consider two settings. In the off-line setting we have
a fixed set of information about the environment and are
searching for an open-loop trajectory. In the on-line setting the

Fig. 1: The desired trajectory found by the planner shown with
its specialized shadows that certify the probability of collision
as less than 0.26%.

robot has access to a stream of observations and can change
its trajectory as a function of new information; the problem
is to find a policy, a function from observations to actions,
that allow the robot to adapt to changing circumstances. We
show that different notions of safety are required for the two
cases to ensure that the robot can guarantee a low probability
of collision throughout its entire execution.

Safety in the offline setting amounts to staying out of
regions likely to be contained within obstacles, and can be
analyzed by computing geometric bounds on obstacles for
which we have only partial information. Safety in the online
setting builds on offline safety by requiring that the robot
respect a contract with respect to the aggregate lifetime risk
of operation while always having a guaranteed safe trajectory
available to it.

We develop a general framework for analyzing safety and
provide an example of applying this framework to a specific
model of random geometry. We wish to emphasize that this
framework can be applied to a wide variety of models beyond
the example shown here.

Our framework operates in generality in Rn and assumes

Figure 11: The desired trajectory found by the planner shown with its specialized shadows that certify the

probability of collision as less than 0.26%

This paper makes three contributions. The first is a formal definition of online safety that provides risk
bounds on the entire execution of a policy. The second contribution is an algorithm for efficiently verifying
offline safety with respect to polytopes with Gaussian distributed faces (PGDFs) that is then generalized to
the online case (see Figure 10). In comparison to previous methods, the quality of the resulting bound is not
dependent on the number of obstacles in the environment. The presented algorithms produce a certificate,
which allows another system to efficiently verify that the actions about to be taken are safe. For a maximal
collision probability of ε, the runtime of the algorithm grows as log 1

ε making it efficient even for very small
εs.

The third contribution is a modification to the RRT algorithm that generates safe plans. For any fixed
, the resulting planner is guaranteed to only return trajectories for which the probability of failure is less
than ε. We note that for n obstacles, the runtime of the RRT is increased only by a log n log 1

ε factor, which
suggests that reasoning about uncertainty can come at a low computational cost. A result of running this
algorithm is shown in Figure 11.

Decidability of Semi-Holonomic Prehensile Task and Motion Planning[2]

The last few decades of robotic planning have been dominated by sample-based techniques. Sample-based
techniques are very useful tools to quickly find solutions in many domains. However, they suffer from the
notable drawback that they cannot prove that a solution does not exist for a particular problem.

The existence of a probabilistically complete algorithm for a planning problem does not settle the question
of whether a complete decision procedure, an algorithm that indicates whether a solution does or does not
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exist for any problem instance, exists. For classic motion planning, a holonomic robot among static obstacles,
we know that exact algorithms exist for the general case. However, for motion planning in the presence of
movable objects, the results are much more limited.

The formal treatment of the problem of planning among movable objects was initiated by Wilfong.
When the number of placements and grasps is finite, the problem can be shown to be decidable by building
a manipulation graph consisting of a finite number of transfer and transit paths. Decidability for continuous
grasps and placements, but involving a single movable object, was shown by Dacre-Wright et al.. More
recently, decidability was shown for planning with two objects under restrictive geometries and dynamics.

In this paper, we consider a much more general version of planning in the presence of movable obstacles.
We allow an arbitrary dimensional world with an arbitrary number of robots, objects, and obstacles, all
with semi-algebraic geometries. We also assume that each robot can be holonomically controlled, and each
object can be holonomically manipulated. In this manner, we can account for various continuous polynomial
dynamics including translations, rotations, stretching, twisting, and morphing. We do restrict our attention
to prehensile manipulation, where objects are rigidly attached to appropriate robots during manipulation.
We call the resulting class of problems prehensile task and motion planning (PTAMP).

We define a general task and motion planning framework capable of representing a large variety of
planning problems including PTAMP. At the core of the framework is the concept of semi-holonomic con-
trollability (SHC), which accurately describes the intrinsic dynamics of many task and motion planning
problems including PTAMP.

The central result of the paper is: jointly-controllably-open (JC-open) domains are decidable. We then
give a perturbation algorithm and show that any real-world PTAMP can be rewritten to be JC-open.

We give a constructive proof of the decidability of JC-open domains. Our algorithm is divided in four
parts. First, we use a decomposition algorithm that decomposes the configuration space into a finite number
of manifolds with special properties. Next, we use techniques from differential geometry to calculate the
internal controllability of each manifold. Afterwards, for every manifold, we calculate its stratified control-
lability, i.e. the controllability gained by leaving a manifold and utilizing the controllability of neighboring
manifolds. To accomplish this step, we present the convergence condition, which we shows holds for JC-open
domains. Finally, we execute a graph search to calculate the reachability set for our initial configuration and
test for the existence of a solution.
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